Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств...
Приведены определения вероятности (классическое, статистическое, геометрическое и аксиоматическое), примеры вычисления вероятности, а также теоремы сложения и умножения, формула полной вероятности, формула Байеса. Рассмотрены основные распределения случайной величины и доказательства их свойств. Исследованы многомерные случайные величины, их характеристики, доказаны свойства функции распределения, плотности распределения, математического ожидания и ковариации. Приведены доказательства неравенств Чебышева и законов больших чисел. Представлена без доказательства предельная теорема в форме теоремы Ляпунова. Выведена интегральная теорема Муавра—Лапласа. Для студентов, изучающих курс «Основы теории вероятностей и математической статистики». Книга «Краткий курс теории вероятностей: учеб. пособие» авторов В. Ф. Панов, С. В. Галкин, Петрухина О.С. оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий