Построены и обоснованы новые весовые методы Монте-Карло для оценки решения задачи Дирихле для многомерного разностного бигармонического уравнения на основе моделирования "блуждания по решетке". Векторные варианты построенных алгоритмов непосредственно распространяются на разностные метагармонические уравнения с сохранением вида условий несмещенности оценок и ограниченности их дисперсий. В связи с этим построен простой алгоритм для оценки первого собственного числа многомерного разностного операт...
Построены и обоснованы новые весовые методы Монте-Карло для оценки решения задачи Дирихле для многомерного разностного бигармонического уравнения на основе моделирования "блуждания по решетке". Векторные варианты построенных алгоритмов непосредственно распространяются на разностные метагармонические уравнения с сохранением вида условий несмещенности оценок и ограниченности их дисперсий. В связи с этим построен простой алгоритм для оценки первого собственного числа многомерного разностного оператора Лапласа. Кроме того, построены специальные алгоритмы "блуждания по решетке", позволяющие при определенных условиях оценивать решения задачи Дирихле для бигармонического уравнения со слабой нелинейностью и для задач со смешанными краевыми условиями, включающими условие Неймана. Книга «Решение многомерного разностного бигармонического уравнения методом Монте-Карло» авторов А. Г. Михайлов, Лукинов В.Л. оценена посетителями КнигоГид, и её читательский рейтинг составил 0.00 из 10.
Для бесплатного просмотра предоставляются: аннотация, публикация, отзывы, а также файлы для скачивания.
Рецензии на книгу
Написано 0 рецензий