Мы видим, что модель Кантора оказывается недостаточно чёткой, а ведь выше говорилось именно о достаточной чёткости как о характерной черте математических моделей. Дело в том, что само понятие достаточной чёткости не абсолютно, а исторически обусловлено. Определения, открывающие собой евклидовы «Начала»: «Точка есть то, что не имеет частей», «Линия же – длина без ширины» и т. д. , казались, вероятно, достаточно чёткими современникам Евклида (III в. до н. э. ), а непреложность его системы в целом не подвергалась публичным сомнениям вплоть до 11 (23) февраля 1826 г. , когда Н. И.
Лобачевский сделал сообщение в отделении физико-математических наук Казанского университета. Зато именно сомнения в этой непреложности и привели в конечном счёте к современной (достаточно чёткой на сегодняшний день) формулировке евклидовой системы геометрии.Трудовые будни математики по необходимости состоят в получении новых теорем, открывающих новые связи между известными понятиями (хотя и теперь ещё приходится слышать – правда, всё реже – удивлённое: «Как? Неужели ещё не всё открыто в этой вашей математике?»). Однако к этому математика отнюдь не сводится. Вот какие цели математического исследования считает важными великий математик А. Н. Колмогоров:
1. Привести общие логические основы современной математики в такое состояние, чтобы их можно было излагать в школе подросткам 14–15 лет.