Читать онлайн «Узлы. Хронология одной математической теории»

Автор Алексей Сосинский

А. Б. СОСИНСКИЙ УЗЛЫ ХРОНОЛОГИЯ ОДНОЙ МАТЕМАТИЧЕСКОЙ ТЕОРИИ Москва Издательство МЦНМО 2005 УДК 515. 16 ББК 22. 15 С66 Сосинский А. Б. С66 Узлы. Хронология одной математической теории: — М. : МЦНМО, 2005. — 112 с. ISBN 5-94057-220-0 Современная теория узлов — бурно развивающаяся область математики, име- ющая приложения в физике, биологии и химии. В книге популярно рассказывается об основных этапах развития этой теории начиная со времени ее возникновения око- ло 150 лет назад. Занимательное изложение сопровождается большим количеством иллюстраций. Книга доступна школьникам старших классов. Она будет интересна широкому кругу читателей. ББК 22. 15 © Сосинский А. Б. , 2005 ISBN 5-94057-220-0 © МЦНМО, 2005 Оглавление Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Глава 1. Атомы и узлы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Глава 2. Узлы, сплетенные из кос . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Глава 3. Плоские диаграммы узлов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Глава 4. Арифметика узлов . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . 51 Глава 5. Хирургия и инварианты . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Глава 6. Полином Джонса и спиновые модели . . . . . . . . . . . . . . . . . . . . . . . 73 Глава 7. Инварианты конечного порядка . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Глава 8. Узлы и физика . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Введение У зел галстука, узлы корабелов и альпинистов, гордиев узел, клубок змей, петля палача... Узлы — это и обиходные предметы, и символы сложности, а порой — метафоры зла. Не знаю почему, но математи- ки их долго игнорировали. Робкая попытка Вандермонда *) в конце XVIII в. , наброски узлов юного Гаусса в начале XIX в. не в счёт. Только в XX в. математики всерьез взялись за дело. Но вплоть до середины 80-х гг. тео- рия узлов оставалась всего-навсего одной из ветвей топологии: достаточно разработанная, конечно, но интересующая лишь узкий круг специалистов (в основном немецких и американских). Сегодня это изменилось. Узлы — точнее, математическая теория уз- лов — интересует многих биологов, химиков, физиков. Узлы вошли в моду. На западных телеканалах о них вещают постмодернисты, со свойствен- ными им самоувереностью и некомпетентностью. Выражения «квантовая группа» или «полином узла» употребляются, порой невпопад, в околона- учных радио- и телепередачах.