a ■ ••:
• • :фа
РОССИЙСКАЯ АКАДЕМИЯ НАУК
КАБАРДИНО-БАЛКАРСКИЙ НАУЧНЫЙ ЦЕНТР
НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ
ПРИКЛАДНОЙ МАТЕМАТИКИ И АВТОМАТИЗАЦИИ
А. М. Нахушев
Задачи со смещением
для уравнений
в частных производных
МОСКВА НАУКА 2006
УДК 517
ББК 22. 161. 6
Н34
Ответственный редактор
доктор физико-математических наук Т. Ш. Кальменов
Рецензенты:
доктор физико-математических наук М. Т. Дженалиев,
доктор физико-математических наук А. П. Солдатов
Нахушев A. M. Задачи со смещением для уравнений в частных производных/A. M. Нахушев ; [отв. ред. Т. Ш. Кальменов ] ; Науч. -исслед. ин-т приклад, математики и
автоматизации Кабардино-Балкар. НЦ РАН. — М. : Наука, 2006. — 287 с. — ISBN
5-02-034076-6 (в пер. ). Монография посвящена краевым и внутреннекраевым задачам со смещением для
основных типов локальных и нелокальных дифференциальных уравнений в частных
производных, теория которых интенсивно развивается с 1969 г. Особый акцент
делается на локальные дифференциальные уравнения второго порядка гиперболического и
смешанного типов, которые лежат в основе математических моделей различных
физических и биологических процессов, на технологии описания необходимых краевых условий
и получении энергетических оценок в пространствах с позитивной и негативными
нормами. Для научных работников, аспирантов, студентов и преподавателей вузов. Темплан 2006-1-135
ISBN 5-02-034076-6 © Научно-исследовательский институт прикладной
математики и автоматизации Кабардино-
Балкарского научного центра РАН, 2006
© Нахушев A. M. , 2006
© Редакционно-издательское оформление. Издательство «Наука», 2006
СОДЕРЖАНИЕ
Предисловие 6
1. Задачи со смещением для уравнений параболического типа и
обыкновенных дифференциальных уравнений 7
1. 1.
Истоки понятия краевых задач со смещением 7
1. 2. Задачи Фурье и Стеклова 9
1. 3. Внутреннекраевые задачи с локальным и нелокальным смещением 11
1. 4. Нелокальные задачи для обыкновенных дифференциальных
уравнений 13
1. 5. Задача с нелокальным (интегральным) смещением для уравнения
Аллера 17
1. 6. Нелокальные краевые условия по терминологии А. А. Дезина 18
1. 7. Задачи с интегральным смещением для уравнения Фурье 20
1. 8. Новые классы краевых задач со смещением 21
2. Задачи с локальным и нелокальным сдвигом для
гиперболического, эллиптического и смешанного типов уравнений 29
2. 1. Краевые и внутреннекраевые задачи со смещением для
гиперболического и смешанного типов уравнений 29
2. 2. О некоторых краевых и внутреннекраевых задачах со смещением
для эллиптических уравнений 35
3. Необходимые краевые и внутреннекраевые условия со
смещением для дифференциальных уравнений второго порядка ... 38
3. 1. Необходимые краевые условия для общих линейных
дифференциальных уравнений 38
3. 2. Необходимое нелокальное условие для уравнений с неотрицательной
характеристической формой 43
3. 3. О правильной постановке краевых задач для параболических
уравнений со знакопеременной характеристической формой 49
3. 4. Необходимые краевые и внутреннекраевые условия со смещением
для оператора Коши-Римана 57
3. 5.