Осциллограф-ваш помощник [приставки к осциллографу]

Иванов Борис Сергеевич

«ОСЦИЛЛОГРАФ — ВАШ ПОМОЩНИК»

(приставки к осциллографу)

Приложение к журналы «Радио»

Выпуск № 3

«Здоровье» деталей — на экране осциллографа

Как вы, наверное, догадались по прочтении заголовка, разговор пойдет о проверке радиодеталей с помощью осциллографа. Хотя существует немало способов проверки диодов, транзисторов, резисторов, конденсаторов и других радиокомпонентов приборами со стрелочными индикаторами, вряд ли они заменят визуальный контроль, при котором бывают заметны дефекты, почти не обнаруживаемые другими приборами.

Итак, поговорим о «просмотре» параметров радиодеталей на экране «нашего осциллографа. Нетрудно догадаться, что просто подключить выводы какой-то детали к входным щупам и наблюдать изображение на экране осциллографа бесполезно. Нужна приставка, способная обеспечить рабочий режим для проверки деталей. Такую приставку придется изготовить самим.

Схема приставки приведена на рис. 1.

В ней использован готовый трансформатор питания Т1 — унифицированный трансформатор кадровой развертки телевизоров ТВК-110ЛМ, который нетрудно приобрести в магазинах радиотоваров или заказать через базу Роспосылторга. У этого трансформатора вторичная обмотка выполнена с отводом почти от середины. Часть напряжения, снимаемого с нижней, по схеме, половины обмотки (между выводами 3 и 4–5), будем использовать чаще, чем все напряжение обмотки. Поэтому и поставлен переключатель SA1, с помощью которого на измерительную часть приставки подается переменное напряжение либо 14 В, либо 27 В.

Совсем не обязательно использовать указанный трансформатор со сравнительно высоким напряжением на вторичной обмотке. Вполне подойдет трансформатор с напряжением 6…8 В, чтобы не перегружать некоторые проверяемые полупроводниковые приборы (в частности, транзисторы, у которых допустимое напряжение между коллектором и эмиттером или базой и эмиттером не превышает десятка вольт), а вот дополнительная обмотка может быть рассчитана даже на большее напряжение — она используется при проверке «высоковольтных» стабилитронов и тринисторов.

С подвижного контакта переключателя SA1 сигнал поступает на гнездо XS1, а с него — на входной щуп осциллографа. «Земляной» щуп осциллографа, подключаемый к гнезду XS2, оказывается соединенным с входным щупом через резистор R3. Поскольку нижний, по схеме, вывод этого резистора не подключен к цепи нижнего вывода вторичной обмотки трансформатора, падения напряжения на резисторе не будет, а значит, не будет и сигнала на входе Y осциллографа.

Другое дело с входом X — его проводник, соединенный с гнездом XS6, оказывается подключенным к выводу 3 вторичной обмотки трансформатора через переменный резистор R2. Поскольку «земляной» щуп осциллографа соединен (через резистор R3) с другим выводом (4–5 или 6) обмотки, на входе X осциллографа будет переменное напряжение, амплитуду которого можно изменять переменным резистором R2 (он образует с входным сопротивлением усилителя канала X делитель напряжения). Поэтому на экране осциллографа, работающего в режиме внешней развертки (кнопка «АВТ.-ЖДУЩ» — в положении «АВТ.», а «РАЗВ.-ВХ. X» — в положении «ВХ. X»), появится горизонтальная линия. Вход осциллографа может быть как открытый, так и закрытый, но лучший вариант — режим открытого входа.

К гнездам XS3—XS5 подключают выводы проверяемых радиодеталей (в основном к гнездам XS3 и XS4). Резистор R1 и кнопка SB I необходимы для проверки и установки калибровки осциллографа по входам Y и X. Резистором R4 устанавливают ток через управляющий электрод при провесе тринисторов.

Постоянные резисторы в приставке могут быть МЛТ-0,25, переменные — СП-1 или аналогичные. Кнопка и переключатель — любой конструкции, сетевой выключатель Q1 — тоже любой конструкции, но рассчитанный на работу при данном сетевом напряжении. Гнезда — любые, но лучше использовать гнезда-зажимы (клеммы), чтобы можно было крепить выводы деталей.

Детали приставки смонтируйте в корпусе произвольной конструкции, например, показанной на рис. 2.

Гнезда-зажимы и органы управления устанавливают на лицевой панели, держатель предохранителя с предохранителем — на задней стенке. Через отверстие в задней стенке выводят шнур питания с сетевой вилкой ХР1 на конце.

Как только приставка будет включена в сеть, а осциллограф подключен к ней, на экране появится горизонтальная линия развертки. Но не спешите регулировать ее длину переменным резистором R2. Сначала установите переключатель SA1 в положение «I» и замкните между собой гнезда XS3 и XS4. На экране осциллографа появится вертикальная полоса (ведь вход X замкнут на «земляной» щуп, а напряжение со вторичной обмотки подведено к резистору R3, а значит, к входу Y), ее наибольший наблюдаемый размах устанавливают входным аттенюатором — в данном примере на рис. 3,а четыре деления масштабной сетки при установке аттенюатора — в положение «10 В/дел.».

Вот теперь, сняв перемычку между гнездами XS3 и XS4, можно установить переменным резистором R2 линию развертки длиной тоже четыре деления масштабной сетки (рис. 3.б). Чтобы убедиться в правильности калибровки, нажмите кнопку SB 1. На экране должна появиться линия (рис. 3, в), расположенная относительно горизонтали и вертикали точно под углом 45°. В случае необходимости более точно наклон можно установить тем же переменным резистором. Теперь все готово к проверке деталей.

Начнем с постоянного резистора. Его выводы подключают к гнездам XS3 и XS4. Поскольку при замыкании этих гнезд на экране появляется вертикальная полоса, а при размыкании — горизонтальная (соответственно нулевое сопротивление и бесконечное), то при проверке резисторов линия будет занимать эти и промежуточные положения в зависимости от сопротивления резистора. Так, с резистором сопротивлением 20 кОм линия отклонится от горизонтали на 20° (рис. 4, а), а с резистором сопротивлением 1,5 кОм — на 60° (рис. 4, б).

Научившись отсчитывать по экрану угол наклона (здесь поможет транспортир), можете составить график, по которому будете определять значение сопротивления График выглядит так, как показано на рис. 5.

Проверяя переменный резистор, подключают к гнездам XS3 и XS4 один из крайних выводов и средний (движок). Перемещая движок из одного крайнего положения в другое, будете наблюдать на экране изменение угла наклона линии. Если линия все время остается непрерывной, резистор исправен. Появление помех, скачки линии от наклонной до горизонтальной свидетельствуют о плохом контакте движка резистора с графитовым слоем. Такой резистор использовать в радиоаппаратуре нежелательно.

Интересна проверка с помощью приставки фоторезистора. При его подключении и затемнении светочувствительного слоя на экране осциллографа должно быть изображение горизонтальной или с небольшим наклоном прямой линии, что свидетельствует о большом темновом сопротивлении фоторезистора. При освещении же чувствительного слоя наклон линии изменится — она будет стремиться к вертикали. Чем больше угол наклона, тем меньшим сопротивлением обладает фоторезистор, а значит, тем больше его освещенность. Как и для резистора, по углу «наклона линии можно определить сопротивление фоторезистора, пользуясь графиком.

Следующая радиодеталь — конденсатор. При подключении его выводов к приставке на экране будет наблюдаться либо прежняя горизонтальная линия, либо эллипс, либо вертикальная линия — все зависит от емкости или качества конденсатора. Так, конденсаторы емкостью до 0,01 мкФ «оставляют» горизонтальную линию на экране, появление вертикальной линии укажет на короткое замыкание обкладок. Если емкость конденсатора 0,02 мкФ и более (до 10 мкФ), на экране наблюдается эллипс или круг в зависимости от емкости. Скажем, емкости 0,3 мкФ будет соответствовать горизонтально расположенный эллипс (рис. 6, а) с отношением горизонтальной оси к вертикальной равным 4. Когда подключите конденсатор емкостью примерно 1 мкФ, на экране появится круг (рис 6, б), а с увеличением емкости круг начнет сжиматься в эллипс с меньшей горизонтальной осью.

По отношению осей эллипса можно определить емкость испытываемого конденсатора, воспользовавшись графиком на рис. 7.

Приставка пригодна для проверки обмоток трансформаторов, дросселей и других деталей сравнительно большой индуктивности. На экране в этом случае появляется эллипс (рис. 8), наклон которого зависит от значения индуктивности. К примеру, при индуктивности до 5 Гн большая ось эллипса оказывается наклоненной ближе к вертикали (рис. 8, а). С индуктивностью 5 Гн появится круг (как и при проверке конденсатора емкостью около 1 мкФ), а при большей индуктивности ось эллипса начнет приближаться к горизонтальной линии (рис. 8, б).

Рис. 8

Сравнивая между собой изображения заведомо исправной обмотки и испытуемой, нетрудно сделать вывод о наличии или отсутствии короткозамкнутых витков в обмотке. Ширина эллипса в этом случае уменьшается, а иногда он превращается в прямую линию, характерную для резисторов определенного сопр ...

Быстрая навигация назад: Ctrl+←, вперед Ctrl+→