Читать онлайн «Лекции по античной философии»

Автор Мераб Мамардашвили

Мераб Мамардашвили

Лекции по античной философии

© Е. М. Мамардашвили, 2014

© В. В. Пожидаев, оформление серии, 2014

© ООО Издательская Группа „Азбука-Аттикус“, 2014

Издательство АЗБУКА

Все права защищены. Никакая часть электронной версии этой книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для частного и публичного использования без письменного разрешения владельца авторских прав.

От редактора

Публикуемый курс лекций был прочитан Мерабом Константиновичем Мамардашвили в январе-апреле 1980 года во Всесоюзном государственном институте кинематографии. Там же с 1978 по 1980 год, помимо этого курса, он прочитал «Введение в философию» и «Очерк современной европейской философии». Лекции во ВГИКе стали своего рода завершением «московского периода» жизни философа: осенью 1980 года он вынужден будет покинуть Москву и переехать в Тбилиси.

Впервые «Лекции по античной философии» вышли в издательстве «Аграф» в 1997 году (под общей редакцией Ю. П. Сенокосова); этим же издательством лекции были переизданы в 2002 году.

Затем последовало издание 2009 года (М. : Прогресс-Традиция; Фонд Мераба Мамардашвили), являющееся дополненным и исправленным по сравнению с изданием 1997 года. Настоящая публикация повторяет издание 2012 года (СПб. : Азбука), которое в свою очередь являлось повторением издания 2009 года. Приступая к подготовке лекций к изданию в 2009 году, я располагала лишь расшифровкой аудиозаписи двенадцати лекций курса (эта же расшифровка лежит в основе издания 1997 года), но окончательная редакция была сделана уже на основании аудиозаписей, присланных из Тбилиси Изой Константиновной Мамардашвили. После прослушивания аудиозаписей лекций текст был приведен в большее соответствие с оригиналом: исправлены ошибки исходной расшифровки, восстановлены неоправданные купюры.

Я также признательна Андрею Парамонову за пояснение к фрагменту лекций, в котором М. К. обращается к математическому образу, известному как сетка Мёбиуса.